Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
J Biomol Struct Dyn ; : 1-17, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38634700

RESUMO

In response to the escalating threat of drug-resistant fungi to human health, there is an urgent need for innovative strategies. Our focus is on addressing this challenge by exploring a previously untapped target, yeast casein kinase (Yck2), as a potential space for antifungal development. To identify promising antifungal candidates, we conducted a thorough screening of the diverse-lib drug-like molecule library, comprising 99,288 molecules. Five notable drug-like compounds with diverse-lib IDs 24334243, 24342416, 17516746, 17407455, and 24360740 were selected based on their binding energy scores surpassing 11 Kcal/mol. Our investigation delved into the interaction studies and dynamic stability of these compounds. Remarkably, all selected molecules demonstrated acceptable RMSD values during the 200 ns simulation, indicating their stable nature. Further analysis through Principal Component Analysis (PCA)-based Free Energy Landscape (FEL) revealed minimal energy transitions for most compounds, signifying dynamic stability. Notably, the two compounds exhibited slightly different behaviour in terms of energy transitions. These findings mark a significant breakthrough in the realm of antifungal drugs against C. albicans by targeting the Yck2 protein. However, it is crucial to note that additional experimental validation is imperative to assess the efficacy of these molecules as potential antifungal candidates. This study serves as a promising starting point for further exploration and development in the quest for effective antifungal solutions.Communicated by Ramaswamy H. Sarma.

2.
J Biomol Struct Dyn ; : 1-20, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38234048

RESUMO

Marburg virus infections are extremely fatal with a fatality range of 23% to 90%, therefore there is an urgent requirement to design and develop efficient therapeutic molecules. Here, a comprehensive temperature-dependent molecular dynamics (MD) simulation method was implemented to identify the potential molecule from the anti-dengue compound library that can inhibit the function of the VP24 protein of Marburg. Virtual high throughput screening identified five effective binders of VP24 after screening 484 anti-dengue compounds. These compounds were treated in MD simulation at four different temperatures: 300, 340, 380, and 420 K. Higher temperatures showed dissociation of hit compounds from the protein. Further, triplicates of 100 ns MD simulation were conducted which showed that compounds ID = 118717693, and ID = 5361 showed strong stability with the protein molecule. These compounds were further validated using ΔG binding free energies and they showed: -30.38 kcal/mol, and -67.83 kcal/mol binding free energies, respectively. Later, these two compounds were used in steered MD simulation to detect its dissociation. Compound ID = 5361 showed the maximum pulling force of 199.02 kcal/mol/nm to dissociate the protein-ligand complex while ID = 118717693 had a pulling force of 101.11 kcal/mol/nm, respectively. This ligand highest number of hydrogen bonds with varying occupancies at 89.93%, 69.80%, 57.93%, 52.33%, and 50.63%. This study showed that ID = 5361 can bind with the VP24 strongly and has the potential to inhibit its function which can be validated in the in-vitro experiment.Communicated by Ramaswamy H. Sarma.

3.
J Biomol Struct Dyn ; : 1-23, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38174404

RESUMO

Recent monkeypox virus (MPXV) infections show the risk of MPXV transmission that persists today and the significance of surveillance and quick response methods to stop the virus's spread. Currently, the monkeypox virus infection is not specifically treated. In this study, QSAR models were designed using known inhibitors of cysteine proteinase from the vaccinia virus, where the Random Forest model and Ridge model had showed the best correlation between predicted and observed EC50. These models were used to screen Maliaceae family phytochemicals against MPXV cysteine proteinase. The compound, IMPHY010637 was detected in top 5 from both the QSAR screening models and showed best docked score (-8.6 kcal/mol) and thus selected for further investigation. Further, the IMPHY010637 showed interaction with the catalytic residue His241 of the protein as reported in earlier studies. The ADMET analysis of the compound showed the acceptable drug-like properties of IMPHY010637. However, these properties could be improved after experimental validation of protein-ligand binding. Both docked complex and poses created in 100 ns MD simulation of the protein-ligand complex showed the presence of multiple hydrogen bonds. RMSD and conformation analysis showed stable binding of IMPHY010637 with the cysteine proteinase of MPXV at its active site. Compared to the known inhibitor, IMPHY010637 showed better binding with the protein as observed by the PCA and MM/GBSA analysis. This study concluded IMPHY010637 as a potential inhibitor for the cysteine proteinase of MPXV using computational methods that could be tested in in-vitro experiments.Communicated by Ramaswamy H. Sarma.

4.
J Biomol Struct Dyn ; 42(4): 1711-1724, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37325855

RESUMO

Zika virus (ZIKV) spread is considered a major public health threat by the World Health Organization (WHO). There are no vaccines or drugs available to control the infection of the Zika virus, therefore a highly effective medicinal molecule is urgently required. In this study, a computationally intensive investigation was performed to identify a potent natural compound that could inhibit the ZIKV NS5 methyltransferase. This research approach is based on target-based drug identification principles where the native inhibitor SAH (S-adenosylhomocysteine) of ZIKV NS5 methyltransferase was selected as a reference. High-throughput virtual screening and tanimoto similarity coefficient were applied to the natural compound library for ranking the potential candidates. The top five compounds were selected for interaction analysis, MD simulation, total binding free energy through MM/GBSA, and steered MD simulation. Among these compounds, Adenosine 5'-monophosphate monohydrate, Tubercidin, and 5-Iodotubercidin showed stable binding to the protein compared to the native compound, SAH. These three compounds also showed less fluctuations in RMSF in contrast to native compound. Additionally, the same interacting residues observed in SAH also made strong interactions with these three compounds. Adenosine 5'-monophosphate monohydrate and 5-Iodotubercidin had greater total binding free energies than the reference ligand. Moreover, the dissociation resistance of all three compounds was equivalent to that of the reference ligand. This study suggested binding properties of three-hit compounds that could be used to develop drugs against Zika virus infections.Communicated by Ramaswamy H. Sarma.


Assuntos
Infecção por Zika virus , Zika virus , Humanos , Simulação de Dinâmica Molecular , Ligantes , Proteínas não Estruturais Virais/química , Adenosina , Metiltransferases/química , Transferases/metabolismo , Transferases/farmacologia , Simulação de Acoplamento Molecular , Antivirais/farmacologia , Antivirais/química
5.
J Pharm Sci ; 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38042341

RESUMO

The West Nile virus (WNV) is the causative agent of West Nile disease (WND), which poses a potential risk of meningitis or encephalitis. The aim of the study was to design an epitope-based vaccine for WNV by utilizing computational analyses. The epitope-based vaccine design process encompassed WNV sequence collection, phylogenetic tree construction, and sequence alignment. Computational models identified B-cell and T-cell epitopes, followed by immunological property analysis. Epitopes were then modeled and docked with B-cell receptors, MHC I, and MHC II. Molecular dynamics simulations further explored dynamic interactions between epitopes and receptors. The findings indicated that the B-cell epitope QINHHWHKSGSSIG, along with three T-cell epitopes (FLVHREWFM for MHC I, NPFVSVATANAKVLI for MHC II, and NAYYVMTVGTKTFLV for MHC II), successfully passed the immunological evaluations. These four epitopes were further subjected to docking and molecular dynamics simulation studies. Although each demonstrated favorable affinities with their respective receptors, only NAYYVMTVGTKTFLV displayed a stable interaction with MHC II during MDS analysis, hence emerging as a potential candidate for a WNV epitope-based vaccine. This study demonstrates a comprehensive approach to epitope vaccine design, combining computational analyses, molecular modeling, and simulation techniques to identify potential vaccine candidates for WNV.

6.
Mol Divers ; 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37925643

RESUMO

Marburg virus disease (MVD) is caused by the Marburg virus, a one-of-a-kind zoonotic RNA virus from the genus Filovirus. Thus, this current study employed AI-based QSAR and molecular docking-based virtual screening for identifying potential binders against the target protein (nucleoprotein (NP)) of the Marburg virus. A total of 2727 phytochemicals were used for screening, out of which the top three compounds (74977521, 90470472, and 11953909) were identified based on their predicted bioactivity (pIC50) and binding score (< - 7.4 kcal/mol). Later, MD simulation in triplicates and trajectory analysis were performed which showed that 11953909 and 74977521 had the most stable and consistent complex formations and had the most significant interactions with the highest number of hydrogen bonds. PCA (principal component analysis) and FEL (free energy landscape) analysis indicated that these compounds had favourable energy states for most of the conformations. The total binding free energy of the compounds using the MM/GBSA technique showed that 11953909 (ΔGTOTAL = - 30.78 kcal/mol) and 74977521 (ΔGTOTAL = - 30 kcal/mol) had the highest binding affinity with the protein. Overall, this in silico pipeline proposed that the phytochemicals 11953909 and 74977521 could be the possible binders of NP. This study aimed to find phytochemicals inhibiting the protein's function and potentially treating MVD.

7.
Pathogens ; 12(10)2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37887736

RESUMO

BACKGROUND AND AIM: Hepatocellular carcinoma (HCC) is a significant complication of hepatitis B and still poses a global public health concern. This systematic review and meta-analysis provide adequate details on the prevalence of HCC in the HBV population within Southeast Asian countries. METHOD: Following the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) criteria, a thorough search for literature discussing the prevalence of HCC in the HBV population within southeast Asia was performed. Eligible studies were subjected to a meta-analysis utilising a DerSimonian and Laird approach and a random effect model. A protocol was registered with PROSPERO (CRD42023423953). RESULT: Our study meticulously recovered 41 articles from seven countries in Southeast Asia, namely Cambodia, Indonesia, Malaysia, the Philippines, Singapore, Thailand, and Vietnam. A total of 39,050 HBV patients and 7479 HCC cases in southeast Asia were analysed. The pooled prevalence of HCC in HBV cases within southeast Asia was 45.8% (95% CI, 34.3-57.8%, I2 = 99.51%, p < 0.001). Singapore (62.5%, CI: 42.4-79.1) had the highest pooled prevalence of HCC in the HBV population compared to Vietnam, with the lowest estimate (22.4%, CI: 9.9-44.9). There was a drop in the pooled prevalence of HCC in HBV from 2016 until now (37.6%, CI: 19.2-60.5). CONCLUSION: The findings of this review reveal a high pooled prevalence of HCC in the HBV population and therefore stir the need for routine screening, management, and surveillance.

8.
ACS Omega ; 8(35): 31747-31757, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37692219

RESUMO

The world faces multiple public health emergencies simultaneously, such as COVID-19 and Monkeypox (mpox). mpox, from being a neglected disease, has emerged as a global threat that has spread to more than 100 nonendemic countries, even as COVID-19 has been spreading for more than 3 years now. The general mpox symptoms are similar to chickenpox and measles, thus leading to a possible misdiagnosis. This study aimed at facilitating a rapid and high-brevity mpox diagnosis. Reportedly, mpox circulates among particular groups, such as sexually promiscuous gay and bisexuals. Hence, selectively vaccinating, isolating, and treating them seems difficult due to the associated social stigma. Deep learning (DL) has great promise in image-based diagnosis and could help in error-free bulk diagnosis. The novelty proposed, the system adopted, and the methods and approaches are discussed in the article. The present work proposes the use of DL models for automated early mpox diagnosis. The performances of the proposed algorithms were evaluated using the data set available in public domain. The data set adopted for the study was meant for both training and testing, the details of which are elaborated. The performances of CNN, VGG19, ResNet 50, Inception v3, and Autoencoder algorithms were compared. It was concluded that CNN, VGG19, and Inception v3 could help in early detection of mpox skin lesions, and Inception v3 returned the best (96.56%) classification accuracy.

9.
Pathogens ; 12(9)2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37764965

RESUMO

BACKGROUND: The protozoan parasite Toxoplasma gondii may cause serious illness in the immunocompromised. The Toxoplasma gondii seropositive prevalence in pregnant women in WHO Eastern Mediterranean Region countries is inconsistent in the literature and it is associated with outcomes that have not be fully elucidated, hence the need for a better understanding of the pooled seroprevalence and associated maternal and fetal outcomes. OBJECTIVE: The objective was to conduct a systematic literature review and determine the pooled prevalence of WHO Eastern Mediterranean Regional countries' pregnant women's seroprevalence of Toxoplasma gondii and the maternal-fetal outcomes. METHODS: This quantitative study examined WHO Eastern Mediterranean countries' maternal-fetal outcomes and Toxoplasma gondii prevalence in pregnant women. The targeted population was pregnant women, while the primary outcome was seropositivity of Toxoplasma gondii, while other outcomes such as maternal and fetal associations and risk factors were determined PubMed, SCOPUS, MEDLINE, and Index Medicus for the Eastern Mediterranean Region (IMEMR) databases were searched up until 30 January 2023. The search terms used were "Toxoplasma gondii" OR "Toxoplasma infection" AND "Pregnant woman" or pregnan* OR Antenatal OR Prenatal OR Gravidity OR Parturition OR Maternal AND WHO Eastern Mediterranean Region). OpenMeta-Analyst and Jamovi were used to analyze the generated data. RESULTS: In total, 95 of 2947 articles meeting the inclusion criteria examined Toxoplasma gondii prevalence in pregnant women from WHO Eastern Mediterranean countries. The pooled prevalence of Toxoplasma gondii in pregnant women was 36.5% (95%CI: 32.6-40.4) with a median value of 35.64%, range values of 1.38-75.30%, with 99.61% heterogeneity. The pooled seroprevalence of IgG of Toxoplasma gondii was 33.5% (95%CI: 29.8-37.2) with a median value of 33.51%, and a range values of 1.38-69.92%; the pooled seroprevalence of IgM was 3.6% (95%CI: 3.1-4.1)) with a median value of 3.62 and range values of 0.20-17.47%, while cases of pooled seroprevalence of both IgG and IgM positivity was 3.0% (95%CI: 1.9-4.4) with a median value of 2.05 and a range values of 0.05-16.62%. Of the Toxoplasma gondii seropositive women, 1281/3389 (34.8%) 174/1765 (32.9%), 1311/3101 (43.7%), and 715/1683 (40.8%) of them had contact with cats, drank unprocessed milk, ate raw or undercooked meat and ate unwashed raw vegetables, respectively. The maternal-fetal outcomes associated with Toxoplasma gondii seropositivity were a history of abortions, miscarriage, stillbirth, intrauterine fetal death, and premature birth, which were found in 868/2990 (32.5%), 112/300 (36.1%), 111/375 (25.7%), 3/157 (1.9%) and 96/362 (20.1%) of women who tested positive for Toxoplasma gondii antibodies. CONCLUSION: The study found a high proportion of Toxoplasma gondii seroprevalence in pregnant women in the WHO Eastern Mediterranean Region, which may be linked to poor outcomes for mothers and their babies. Thus, pregnant women require monitoring and comprehensive prevention strategies for Toxoplasma gondii infection.

10.
Mol Divers ; 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37578620

RESUMO

Tuberculosis (TB) is a global burden to humanity due to its adverse effects on health and society since time is not clearly defined. The existence of drug-resistant strains and the potential threat posed by latent tuberculosis act as strong impetuses for developing novel anti-tuberculosis drugs. In this study, various flavonoids were tested against the Mycobacterium tuberculosis (Mtb) Isocitrate Lyase (ICL), which has been identified as an authorised therapeutic target for treating Mtb infection. Using in silico drug discovery approach, a library of 241 flavonoid compounds was virtually screened against the binding pocket of the crystalline ligand, the VGX inhibitor, in the Mtb ICL protein. As a result, the top four flavonoids were selected based on binding score and were further considered for redocking and intermolecular contact profiling analysis. The global and local fluctuations in the protein and ligand structure were analysed using their root mean square deviation (RMSD) and root mean square fluctuation (RMSF) values obtained from the GROMACS generated 100 ns molecular dynamics (MD) simulation trajectories. The end-state binding free energy was also calculated using the MMPBSA approach for all the respective docked complexes. All four selected compounds exhibited considerable stability and affinity compared to control ligands, i.e. VGX inhibitor; however, Vaccarin showed the highest stability and affinity against the Mtb ICL protein active site, followed by the Genistin, Glabridin, and Corylin. Therefore, this study recommends selected flavonoids for in vitro and in vivo experimental studies to check their potency and efficacy against Mtb.

11.
Biomedicines ; 11(7)2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37509466

RESUMO

The purpose of this review is to give an up-to-date, thorough, and timely overview of monkeypox (Mpox), a severe infectious viral disease. Furthermore, this review provides an up-to-date treatment option for Mpox. The monkeypox virus (MPXV) has remained the most virulent poxvirus for humans since the elimination of smallpox approximately 41 years ago, with distribution mainly in central and west Africa. Mpox in humans is a zoonotically transferred disease that results in symptoms like those of smallpox. It had spread throughout west and central Africa when it was first diagnosed in the Republic of Congo in 1970. Mpox has become a major threat to global health security, necessitating a quick response by virologists, veterinarians, public health professionals, doctors, and researchers to create high-efficiency diagnostic tests, vaccinations, antivirals, and other infection control techniques. The emergence of epidemics outside of Africa emphasizes the disease's global significance. A better understanding of Mpox's dynamic epidemiology may be attained by increased surveillance and identification of cases.

12.
J Biomol Struct Dyn ; 41(24): 15085-15105, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36883874

RESUMO

RNA-dependent RNA polymerase, also known as RdRp, is a possible therapeutic target that could be used to suppress the proliferation of RNA viruses such as SARS-CoV-2. This protein has two major functional sites (a) catalytic and (b) substrate entry, which regulate the natural substrate entry and its corresponding interaction with the protein. In this study, a computational drug design pipeline was applied to investigate potential inhibitors against SARS-CoV-2 RdRp from Lauraceae plants, and five top hits were selected based on the docked score (< -7 kcal/mol). The docking study suggested that the Glochidioboside had a minimum binding score of -7.8 kcal/mol. This compound showed total five hydrogen bonds while two of them were with catalytic residues Asp618 and Asp760. However, another compound, Sitogluside showed a binding score of -7.3 kcal/mol with four hydrogen bonds targeting three functional residues (Arg555, Ser759, and Asp760). Later, 100 ns explicit solvent molecular dynamics (MD) simulation was performed to evaluate the stability of the protein-ligand docked system. These compounds translocated their positions from the catalytic site to the substrate entry site, as observed in the MD simulation trajectory. However, translocation did not affect the binding strength of these compounds, and they retained the strong binding affinity (ΔG < -11.5 kcal/mol), estimated using the MM/GBSA method. In general, the findings of this study indicated the potential therapeutic compounds that may be used targeting SARS-CoV-2 RdRp. However, these compounds still need to be validated by experimentation in order to determine their inhibitory function.Communicated by Ramaswamy H. Sarma.


Assuntos
COVID-19 , Lauraceae , RNA Viral , SARS-CoV-2 , RNA Polimerase Dependente de RNA , Simulação de Dinâmica Molecular , Antivirais/farmacologia , Simulação de Acoplamento Molecular
13.
Vaccines (Basel) ; 11(3)2023 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-36992283

RESUMO

The COVID-19 pandemic has caused havoc all around the world. The causative agent of COVID-19 is the novel form of the coronavirus (CoV) named SARS-CoV-2, which results in immune system disruption, increased inflammation, and acute respiratory distress syndrome (ARDS). T cells have been important components of the immune system, which decide the fate of the COVID-19 disease. Recent studies have reported an important subset of T cells known as regulatory T cells (Tregs), which possess immunosuppressive and immunoregulatory properties and play a crucial role in the prognosis of COVID-19 disease. Recent studies have shown that COVID-19 patients have considerably fewer Tregs than the general population. Such a decrement may have an impact on COVID-19 patients in a number of ways, including diminishing the effect of inflammatory inhibition, creating an inequality in the Treg/Th17 percentage, and raising the chance of respiratory failure. Having fewer Tregs may enhance the likelihood of long COVID development in addition to contributing to the disease's poor prognosis. Additionally, tissue-resident Tregs provide tissue repair in addition to immunosuppressive and immunoregulatory activities, which may aid in the recovery of COVID-19 patients. The severity of the illness is also linked to abnormalities in the Tregs' phenotype, such as reduced expression of FoxP3 and other immunosuppressive cytokines, including IL-10 and TGF-beta. Hence, in this review, we summarize the immunosuppressive mechanisms and their possible roles in the prognosis of COVID-19 disease. Furthermore, the perturbations in Tregs have been associated with disease severity. The roles of Tregs are also explained in the long COVID. This review also discusses the potential therapeutic roles of Tregs in the management of patients with COVID-19.

14.
Front Pharmacol ; 14: 1107435, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36755952

RESUMO

This study was done to investigate the possible nephroprotective effect of an ethanolic root extract of Polyalthia Longifolia (PL) on vancomycin-induced nephrotoxicity using curative and protective models. Vancomycin (150 mg/kg, intravenous) was given to healthy Wistar albino rats in the curative model before the start of treatment, whereas the protective group received vancomycin at the conclusion of the 10-day treatment procedure. Animals were divided into six groups for both models; group I served as the normal control, while groups II, III, IV, V, and VI were kept as toxic control, standard (selenium, 6 mg/kg), LDPL (low dose of PL 200 mg/kg), HDPL (high dose of PL 400 mg/kg), and HDPL + selenium (interactive) groups, respectively. Renal biomarkers [(uric acid, creatinine, blood urea nitrogen (BUN), serum proteins], and blood electrolyte levels were measured for all tested groups. When compared to the vancomycin group, the HDPL significantly (p < 0.01) showed greater effectiveness in lowering the BUN, potassium, and calcium levels. Additionally, in the curative model, there was a significant (p < 0.05) decrease in the blood levels of uric acid, creatinine, BUN, potassium, and calcium in the animals who received the combination of selenium and HDPL. Both LDPL and HDPL did not provide any distinguishable effect in the protective model, but groups that received HDPL with selenium did provide detectable protection by significantly lowering their levels of uric acid, BUN, serum potassium, and total serum protein in comparison to the vancomycin control group. These findings indicate that, whether administered before or after renal damage is induced, the Polyalthia longifolia root extract provided only modest protection to nephrons, which require selenium support to prevent vancomycin-induced kidney damage.

15.
Vaccines (Basel) ; 11(2)2023 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-36851175

RESUMO

Globally, the novel corona virus infection has continued to witness a growing number of cases since December 2019 when the outbreak was discovered and noted in China. Despite this has not been well studied for the case of COVID-19, human contact, public moveableness and environmental variables could have an impact onairborne'spropagation and virus continuance, such as influenza virus. This study aimed to determine the seasonal variation and geographical distribution of COVID-19 across Nigeria. An internet based archival research design was employed for this study on the seasonal variation and geographical distribution of COVID-19 across Nigeria. This involved the use of goggle mobility data and world map on Corona Virus Infection (COVID-19). The search strategy for getting information for this research was done electronically. The keywords in the case search using the goggle mobility software was "COVID-19 Update", "COVID-19 Update in Nigeria", 'COVID-19 Winter Report', "COVID-19 Case Fatality March 2020-July 2021", "COVID-19 Case Fatality in Nigeria". The data gotten from the goggle motor updates were entered into Statistical Package for the Social Sciences (SPSS) which was used in the analysis of the study. Results from the study, reported that official COVID-19 cases number was significantly higher in the Dry season (October 2020-April 2021) with 59.0% (127,213) compared to 41.0% (85,176) in the wet/rainy season (May-September) it revealed that the dry and rainy seasons had a COVID-19 prevalence of 0.063 and 0.041 respectively. Further results from the study showed that the prevalence of COVID-19 was 0.07% in the North-Central, 0.04% in both the North-East and North-West, 0.03% in the South-West, 0.09% in the South-South, and the highest prevalence of 0.16% in the South-East. Considering the case Fatality rate of COVID-19 during the Dry and Wet Seasons. The study revealed that North-Central had a death toll of 196 (10.4%) out of 9457 confirmed COVID-19 cases hence a fatality of 2.07. Fatality rate of 1.49% in South western Nigeria, South-South Nigeria, 1.49%, South-East accounted to a fatality rate of 1.25%. Nigeria based on the finding of this study records increased fatality in Dry season over wet seasons. The study concluded that prevalence of COVID-19 varies in seasons in Nigeria Hence; further Data and Meteorological analysis on weather variations towards the SARS-CoV-2 Virus spread should be evaluated by future researchers. It is imperative to ensure strict and controlled application of social measures, such as social distancing, mandatory wearing of non-medical masks to prevent droplets from entering the respiratory tract, screening of affected patients along with quarantine is essential to defeat and improve infection control.

16.
Antibiotics (Basel) ; 12(1)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36671350

RESUMO

Enterobacteriaceae have been classified as severely drug resistant bacteria by the World Health Organization due to their extensive production and dissemination of carbapenemases (CPs) and extended-spectrum ß-lactamases (ESBL). The current study was conducted with the aim to determine the prevalence of CP- and ESBL-producing Enterobacteriaceae, as well as their antibiotic susceptibility profiles. For this, a hospital-based study was conducted which included 384 participants with bacterial infections. The collection and processing of specimens was conducted per standard microbiological protocol. The samples were inoculated on agar media plates to obtain the bacterial growths, and if they were positive for any bacterial growth, the antibiotic susceptibility testing was performed using disk diffusion method to check their antibiotic susceptibility patterns. The double disc diffusion as well as carbapenem inhibition techniques were used to examine the CP enzymes. Multiplex real-time PCR technique was performed to identify three distinct genetic types of CPs that have been identified in the Enterobacteriaceae (KPC, NDM, and OXA-48). A majority of participants (58.3%) in the current study were living in urban areas. A total of 227 (59.1%) patients were hospitalized. Furthermore, 26.04% of the patients were determined to be suffering from infections with Enterobacteriaceae. Escherichia coli was the most prevalent (9.1%) isolate overall, followed by Klebsiella pneumoniae (8.07%), Acinetobacter baumannii (2.6%), Pseudomonas aeruginosa (3.1%), Enterobacter cloacae (1.3%), Proteus spp. (1.3%), and Morganella spp. (0.5%). The studied patients were suffering from urinary tract infections (48.6%), blood stream infections (32.2%), wounds infection (11.9%), and respiratory infections (7.03%), confirmed with bacterial cultures. The resistance against carbapenems was seen in 31.4% of E. coli isolates, 25.8% in K. pneumoniae, 50% in P. aeruginosa, 25% in A. baumannii, and 20% in E. cloacae isolates. Such high rates of CP- and ESBL-producing Enterobacteriaceae are alarming, suggesting high spread in the study area. It is advised to implement better infection prevention and control strategies and conduct further nationwide screening of the carriers of these pathogens. This might help in reducing the burden of highly resistant bugs.

17.
Pharmaceuticals (Basel) ; 15(11)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36422556

RESUMO

Antimicrobial resistance (AMR) is a leading cause of treatment failure for many infectious diseases worldwide. Improper overdosing and the misuse of antibiotics contributes significantly to the emergence of drug-resistant bacteria. The co-contamination of heavy metals and antibiotic compounds existing in the environment might also be involved in the spread of AMR. The current study was designed to test the efficacy of heavy metals (arsenic) induced AMR patterns in clinically isolated extended-spectrum ß-lactamase (ESBL) producing bacteria. A total of 300 clinically isolated ESBL-producing bacteria were collected from a tertiary care hospital in Lahore, Pakistan, with the demographic characteristics of patients. After the collection of bacterial isolates, these were reinoculated on agar media for reidentification purposes. Direct antimicrobial sensitivity testing (AST) for bacterial isolates by disk diffusion methods was used to determine the AST patterns with and without heavy metal. The heavy metal was concentrated in dilutions of 1.25 g/mL. The collected bacterial isolates were isolated from wounds (n = 63, 21%), urine (n = 112, 37.3%), blood (n = 43, 14.3%), pus (n = 49, 16.3%), and aspirate (n = 33, 11%) samples. From the total 300 bacterial isolates, n = 172 were Escherichia coli (57.3%), 57 were Klebsiella spp. (19%), 32 were Pseudomonas aeruginosa (10.6%), 21 were Proteus mirabilis (7%) and 18 were Enterobacter spp. (6%). Most of the antibiotic drugs were found resistant to tested bacteria. Colistin and Polymyxin-B showed the highest sensitivity against all tested bacteria, but when tested with heavy metals, these antibiotics were also found to be significantly resistant. We found that heavy metals induced the resistance capability in bacterial isolates, which leads to higher AMR patterns as compared to without heavy metal tested isolates. The results of the current study explored the heavy metal as an inducer of AMR and may contribute to the formation and spread of AMR in settings that are contaminated with heavy metals.

18.
Microorganisms ; 10(10)2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36296253

RESUMO

The epidemiological and clinical aspects of coronavirus disease-2019 (COVID-19) have been subjected to several investigations, but little is known about symptomatic patients with negative SARS-CoV-2 PCR results. The current study investigated patients who presented to the hospital with respiratory symptoms (but negative SARS-CoV-2 RT-PCR results) to determine the prevalence of bacterial pathogens among these patients. A total of 1246 different samples were collected and 453 species of bacterial pathogens were identified by culture. Antibiotic susceptibility testing was performed via the Kirby Bauer disc diffusion test. Patients showed symptoms, such as fever (100%), cough (83%), tiredness (77%), loss of taste and smell (23%), rigors (93%), sweating (62%), and nausea (81%), but all tested negative for COVID-19 by PCR tests. Further examinations revealed additional and severe symptoms, such as sore throats (27%), body aches and pain (83%), diarrhea (11%), skin rashes (5%), eye irritation (21%), vomiting (42%), difficulty breathing (32%), and chest pain (67%). The sum of n = 1246 included the following: males, 289 were between 5 and 14 years, 183 (15-24 years), 157 (25-34 years), 113 (35-49 years), and 43 were 50+ years. Females: 138 were between 5 and 14 years, 93 (15-24 years), 72 (25-34 years), 89 (35-49 years), and 68 were 50+ years. The Gram-positive organisms isolated were Staphylococcus aureus (n = 111, 80.43%, MRSA 16.6%), E. faecalis (n = 20, 14.49%, VRE: 9.4%), and Streptococcus agalactiae (n = 7, 5.07%), while, Gram-negative organisms, such as E. coli (n = 135, 42.85%, CRE: 3.49%), K. pneumoniae (n = 93, 29.52%, CRE: 1.58%), P. aeruginosa (n = 43, 13.65%), C. freundii (n = 21, 6.66%), Serratia spp. (n = 8, 2.53%), and Proteus spp. (n = 15, 4.76%) were identified.

19.
Pathogens ; 11(10)2022 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-36297149

RESUMO

Background: Among gram-negative bacteria, Klebsiella pneumoniae is one of the most common causes of healthcare-related infection. Bloodstream infections (BSIs) caused by Klebsiella pneumoniae are notorious for being difficult to treat due to resistance to commonly used antimicrobials. Klebsiella pneumoniae isolates from bloodstream infections are becoming increasingly resistant to carbapenems. In the fight against carbapenem-resistant Klebsiella pneumoniae, colistin [polymyxin E] is the antimicrobial of choice and is thus widely used. Objective: This study aimed to determine the global prevalence of colistin resistance amongst Klebsiella pneumoniae isolates from bloodstream infections. Methods: PubMed, Medline, Scopus, and the Cochrane Library were searched for published articles without restricting the search period. Studies meeting the predefined inclusion and exclusion criteria were included, and quality was assessed using Joanna Briggs Institute Checklist. We used a statistical random effect model to analyze data with substantial heterogeneity (I2 > 50%) in the meta-analysis. Results: A total of 10 studies out of 2873 search results that met the inclusion criteria were included in the final synthesis for this study. A pooled prevalence of colistin resistance was 3.1%, 95% CI (1.5−4.7%). The highest colistin resistance pooled prevalence was recorded in isolates studied in 2020 and beyond 12.90% (4/31), while Klebsiella pneumoniae isolates studied in 2015 and before and in 2016−2019 showed a pooled colistin resistance rate of 2.89% (48/1661) and 2.95% (28/948), respectively. The highest colistin resistance was found in Klebsiella pneumoniae isolates from Thailand (19.2%), while the least pooled resistance was in Klebsiella pneumoniae from South Korea (0.8%). The pooled prevalence of the multidrug-resistant (MDR) of Klebsiella pneumoniae from bloodstream infection ranged from 80.1%, 95% CI (65.0−95.2%), and the resistance prevalence of other antibiotics by Klebsiella pneumoniae from bloodstream infections were as follows; ciprofloxacin (45.3%), ertapenem (44.4%), meropenem (36.1%), imipenem (35.2%), gentamicin (33.3%), amikacin (25.4%) and tigecycline (5.1%). Klebsiella pneumoniae recovered from the intensive care unit (ICU) showed higher colistin resistance, 11.5% (9/781%), while non-ICU patients showed 3.03% (80/2604) pooled colistin resistance. Conclusion: This study showed low colistin resistance in Klebsiella pneumoniae isolates from global bloodstream infections. However, significant colistin resistance was observed in isolates collected from 2020 and beyond. Significant colistin resistance was also observed in Klebsiella pneumoniae isolates in bloodstream infections from the intensive care unit (ICU) compared to those from non-ICUs. As a result, there is a need to institute colistin administration stewardship in the ICU in clinical settings.

20.
Microorganisms ; 10(8)2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-36014038

RESUMO

Enterobacter cloacae is mainly responsible for sepsis, urethritis, and respiratory tract infections. These bacteria may affect the transcription of the host and particularly their immune system by producing changes in their epigenetics. In the present study, four proteins of Enterobacter cloacae were used to predict the epitopes for the construction of an mRNA vaccine against Enterobacter cloacae infections. In order to generate cellular and humoral responses, various immunoinformatic-based approaches were used for developing the vaccine. The molecular docking analysis was performed for predicting the interaction among the chosen epitopes and corresponding MHC alleles. The vaccine was developed by combining epitopes (thirty-three total), which include the adjuvant Toll-like receptor-4 (TLR4). The constructed vaccine was analyzed and predicted to cover 99.2% of the global population. Additionally, in silico immunological modeling of the vaccination was also carried out. When it enters the cytoplasm of the human (host), the codon is optimized to generate the translated mRNA efficiently. Moreover, the peptide structures were analyzed and docked with TLR-3 and TLR-4. A dynamic simulation predicted the stability of the binding complex. The assumed construct was considered to be a potential candidate for a vaccine against Enterobacter cloacae infections. Hence, the proposed construct is suitable for in vitro analyses to validate its effectiveness.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...